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ABSTRACT: A new theoretical equation that describes the thermal conductivity of
two-phase composite materials has been proposed. The Cheng-Vachon equation has
been modified by introducing a new parameter named Pd max, permitting the new
equation to describe the thermal conductivity of composite materials for a wide variety
of filler shapes and states of dispersion. The new equation can describe the thermal
conductivity of two-phase materials more accurately than any of the previous equa-
tions. Furthermore, this new equation will make it possible to evaluate the dispersion
state of the discontinuous phase by measuring the thermal conductivity of the filled
polymers or the polymer blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72:
1689–1697, 1999
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INTRODUCTION

Polymer materials have been used as thermal
insulators for a long time because of their low
thermal conductivity. However, they have also
recently been used as composite materials in
fields where highly thermally conductive materi-
als are required. Such composite materials usu-
ally consist of polymers and highly thermally con-
ductive inorganic fillers. In designing such filled
polymers, it is essential to predict the thermal
conductivity of the final products. Therefore,
many theoretical or empirical equations have
been proposed to describe the thermal conductiv-
ity of heterogeneous materials.1–7 However, few
equations consider the dispersion state of the
filler, although this factor undoubtedly affects the
thermal conductivity of the composite materials.

Cheng and Vachon proposed a theoretical
equation that is regarded as one of the best fitting
equations to the experimental data.4,8 The
Cheng-Vachon equation is based on several as-
sumptions: the filler is uniformly dispersed, no
porosity exists in the composite material, the ef-
fect of the interface can be ignored, and thermal
convection and radiation are negligible. In prac-
tice, however, real composite materials do not
always exactly conform to these assumptions.
Hence, the Cheng-Vachon equation does not pro-
vide an exact fit to such materials.

Nielsen applied equations for the elastic mod-
uli of composite materials to the prediction of
thermal conductivity of composite materials.5,9,10

This equation is provided by modifying the Hal-
pin-Tsai equation11 to include the effect of shape
and orientation of the filler in two-phase materi-
als. These factors are supposed to affect the dis-
persion state of the fillers. The Nielsen equation
can provide very reasonable values to experimen-
tal results as long as such factors are known.
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In this study, the Cheng-Vachon equation is
modified by introducing a new parameter named
Pd max. This new parameter includes information
of the dispersion state of the fillers in the compos-
ite materials. This modified Cheng-Vachon equa-
tion is verified with experimental data and com-
pared with both the Cheng-Vachon and Nielsen
equations.

THEORY

Cheng and Vachon’s Theory

The Cheng-Vachon equation is obtained from
Tsao’s theory. Tsao developed the relationship
shown in eq. (1) for predicting the thermal con-
ductivity of two-phase materials.3
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where km, kc, and kd stand for the thermal con-
ductivity of the two-phase material, the continu-
ous phase, and the discontinuous phase, respec-
tively. In this theory, the conductivity of the con-
stituents is required. Values of m and s, which
represent the mean and standard deviation of a
“one-dimensional porosity,” P1, are required to
predict the thermal conductivity of the two-phase
system. Tsao developed a relationship for “two-
dimensional porosity,” P2 in terms of P1 using
probabilistic theory. The effective thermal con-
ductivity of the mixture was calculated with P1,
m, s, and the thermal conductivity of the constit-
uents. However, it is very difficult to obtain m and
s in practice.

Cheng and Vachon extended Tsao’s theory by
assuming that the distribution function of the
discontinuous phase is parabolic.4 This assump-
tion circumvents the necessity of experimentally
determining m and s, because these values are
not required.

Cheng and Vachon used a unit cube, as shown
in Figure 1(a), to predict the thermal conductivity
of a two-phase mixture. This unit cube is sliced
into many layers perpendicular to the heat flow

direction, which is parallel to the x-axis. The ar-
rangement of the discontinuous phase as shown
in Figure 1(b) does not change the effective ther-
mal conductivity of the unit cube because parallel
conductivity is additive. Because each layer can
be considered infinitesimally thin, the arrange-
ment of the layers shown in Figure 1(c) does not
affect the effective thermal conductivity of the
unit cube.

The equivalent thermal resistance of the con-
figuration, Re, shown in Figure 1(c), is calculated
by the following equation.

Re 5 2 E
0

x dx
kc 1 ~kd 2 kc!y

1
1 2 2x

kc
. (2)

The thermal conductivity is obtained by defini-
tion as follows:

km 5
1
Re

. (3)

Cheng and Vachon’s theory assumes that the
distribution of the discontinuous phase, which
represents the discontinuous volume fraction, is a
normal distribution curve. Therefore,

y 5 C1exp~ 2 C2x2!, (4)

where C1 and C2 are constants. This equation can
be expanded in a series.

y 5 C1S1 2 C2x2 1
C2

2x4

2! 2 · · · D . (5)

Because this series converges rapidly for all
values of x between 20.5 and 0.5, all terms are
eliminated except the first two.

Figure 1 Model for the study of the thermal conduc-
tivity of two-phase materials.
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y 5 B 1 Cx2. (6)

In this parabolic function, B and C are con-
stants. The volume fraction of the discontinuous
phase, Pd, is represented by the gray area sur-
rounded by the parabolic curve and the x-axis in
Figure 2. Therefore,

Pd 5 2 E
0

a

ydx, (7)

where

y 5 B 1 Cx2 at |x| # a , 0.5,

y 5 0 at a # |x| # 0.5,

and a is the value of the x-intercept. As a bound-
ary condition, it is assumed that this parabolic
curve includes two points at the maximum point:

y 5 1 at x 5 0

and

y 5 0 at x 5 0.5.

This implies that the fillers will not fully agglom-
erate until they are in closest packing, and that
thermal conductive paths through the composite
materials are built when the fillers are in closest
packing. From these boundary conditions, one ob-
tains

B 5 1

and

C 5 2 4.

The maximum value of Pd is calculated to be
0.667 from eq. (7) and the boundary conditions.
Assume as Pd decreases from its maximum value
of 0.667, the absolute value of y at x 5 0, corre-
sponding to B in eq. (6), shrinks 2d and the abso-
lute value of x also shrinks 2d at y 5 0 in Figure
2. This assumption, substituting B/ 2 for x and 0
for y in eq. (6), leads to the following relationship
between B and C:

B 5 2 4/C. (8)

Because

Pd 5 2 E
0

B/2

ydx 5 2 E
0

B/2

~B 1 Cx2!dx

5 2B2/3,

B and C are obtained as a function of Pd as
follows:

B 5 S3
2 PdD 1/2

(9a)

and

C 5 2 4YS3
2 PdD 1/2

. (9b)

From eqs. (2) and (6), the effective thermal
resistance of this composite material model is rep-
resented as follows:

Re 5 2 E
0
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@kc 1 B~kd 2 kc!# 2 C9~kd 2 kc!x2

1
1 2 B

kc
, (10)

where C9 5 2C.
When kd . ke, a normal condition for compos-

ite materials consisting of polymers and highly
thermally conductive fillers,

Figure 2 Phase distribution for a two-phase mate-
rial.
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When kd , kc, and Re is represented as follows:

Re 5 2@2C9~kd 2 kc!$kc 1 B~kd 2 kc!%#
21/2

3 tan21
B
2 H 2C9~kd 2 kc!

kc 1 B~kd 2 kc!
J 1/2

1
1 2 B

kc
. (12)

Finally, from eq. (11) or (12), the thermal conduc-
tivity of the composite material is predicted with
kc, kd, and Pd.

New Theory

In Cheng and Vachon’s theory, the dispersion
state and the shape of the filler are not consid-
ered, although the thermal conductivity of com-
posite materials is dependent on these factors.
Therefore, in practice, the Cheng-Vachon equa-
tion does not provide an exact fit to some materi-
als. For this reason, a new parameter, which in-
cludes such factors, has been introduced to the
Cheng-Vachon equation to improve it.

Cheng and Vachon assumed that the parabolic
distribution curve included (0,1) and (0.5,0) at the
maximum filler content. Consequently, the max-
imum volume fraction of the discontinuous phase
was inevitably fixed to be 0.667. However, this
value should be dependent on the dispersion state
and the shape of the filler as shown in Table I, in
which fm, the maximum packing fraction, of typ-
ical fillers in selected packing orders is listed. fm
is defined as the true volume of the particles
divided by the volume they appear to occupy
when packed to their maximum extent. For most
fillers, fm has to be determined experimentally.

The maximum volume fraction of the discon-
tinuous phase is defined as a new parameter
named Pd max, and is applied to the Cheng-Va-
chon equation. Pd max reflects the dispersion state
and the shape of the filler and is defined as the
area surrounded by the x-axis and the dispersion
curve including points (0, 1) and (0.5, 0) in Fig-
ure 3.

Assuming the dispersion state of the discontin-
uous phase does not change substantially
throughout the volume fraction of the discontin-
uous phase under examination, the shape of the
distribution curve at a certain volume fraction,
Pd, is supposed to be geometrically similar to that
at Pd max, as shown in Figure 3. Because the area
is proportional to the square of the length, Pd and
Pd max should have the following relationship:

Pd 5 B2Pd max. (13)

Therefore, B and C are represented as a function
of Pd and Pd max from eq. (8) and (13):

B 5 S Pd

Pd max
D 1/2

(14a)

C 5 2 4YS Pd

Pd max
D1/2

. (14b)

Table I Maximum Packing Fractions5

Shape of
Particle Type of Packing fm

Spheres Hexagonal close 0.7405
Spheres Face centered cubic 0.7405
Spheres Body centered cubic 0.60
Spheres Simple cubic 0.524
Spheres Random close 0.637
Spheres Random loose 0.601
Rods or fibers Uniaxial hexagonal close 0.907
Rods or fibers Uniaxial simple cubic 0.785
Rods or fibers Uniaxial random 0.82
Rods or fibers Three dimensional

random
0.52

Figure 3 Schematic diagram of Pd max and Pd.
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From eqs. (6), (14a), and (14b), the distribution
function of the discontinuous phase is

y 5 S Pd

Pd max
D 1/2

2 4SPd max

Pd
D 1/2

x2. (15)

To distinguish the constants B and C from the
ones of the Cheng-Vachon equation, these are
replaced by B0 and 2C0, respectively. Thus,

B0 5 B 5 S Pd

Pd max
D1/2

and

C0 5 2 C 5 4SPd max

Pd
D 1/2

.

When kd . kc, the effective thermal resistance of
this composite material is represented as follows:
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When kd , kc,
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The thermal conductivity of this composite ma-
terial is obtained as a reciprocal of Re by defini-
tion. If Pd max 5 0.667, this new theoretical equa-
tion is identical to the Cheng-Vachon equation.

Nielsen’s Theory

Nielsen proposed the following equation to pre-
dict the thermal conductivity of composite mate-
rials.

km 5
1 1 ADPd

1 2 DcPd
kc (18)

where

D 5
kd/kc 2 1
kd/kc 1 A (19)

c 5 1 1 S1 2 fm

fm
2 DPd (20)

The constant A depends on the shape and the
orientation of the filler in the composite material;
the constant A is related to the generalized Ein-
stein coefficient kE.

A 5 kE 2 1. (21)

Table II lists the values of A for typical fillers.
Nielsen initially applied this equation to de-

scribe the modulus and viscosity of composite ma-
terials. Nonetheless, it is confirmed that the
Nielsen equation fits the experimentally obtained
thermal conductivity data quite well for the wide
range of fillers.7

RESULTS AND DISCUSSION

Effect of Filler Shape

Figure 4 shows the relationship between the ther-
mal conductivity of spherical glass-filled polysty-
rene and the volume fraction of the filler. The
experimental data used here are values reported
by Sundstrom et al.12 In this case, the three the-
oretical equations fit the experimental data very
well.

The values used for the parameters A and fm
in the Nielsen equation are 1.5 and 0.64, respec-
tively. These values are reasonable values for the
spherical fillers in random packing. Fitting the
calculated values given by eq. (16) to the experi-
mental data provides 0.69 as the value of Pd max.
The average deviations of the calculated values
from the experimental data for eq. (16), the
Cheng-Vachon equation, and the Nielsen equa-
tion are 1.9, 2.4, and 5.0%, respectively. This in-
dicates that the new equation would be able to
describe the thermal conductivity of two-phase
composite materials consisting of spherical parti-
cles more accurately than the other two equa-
tions.

Although Cheng and Vachon’s theory does not
consider the effect of the shape and the dispersion
state of the filler, it gives reasonable values for
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composite materials consisting of spherical parti-
cles due to the lack of orientation factor and ag-
glomeration. This implies that the spherical par-
ticles would not make effective thermal conduc-
tive paths until the fillers are maximally packed,
and that the filler content at the maximum pack-
ing would be close to 0.667, as Cheng and Vachon
assumed.

However, it is difficult for the Cheng-Vachon
equation to accurately describe the thermal con-
ductivity of composite materials produced from
fillers having a larger aspect ratio. The thermal
conductivity of polyethylene–carbon short-fiber
composite materials is shown in Figure 5. The
experimental data used are from Agari et al.13

The aspect ratio of this milled carbon fiber is 13.4.

Figure 5 clearly shows that eq. (16) and the
Nielsen equation can represent the thermal con-
ductivity more accurately than the Cheng-Vachon
equation when the filler has a large aspect ratio.
In this case, Pd max is determined to be 0.45 by
fitting the calculated values to the experimental
data. For the Nielsen equation, A and fm are
selected to be 6.5 and 0.48, respectively. These
values are reasonable values for a random pack-
ing system of short fibers whose aspect ratio is
13.4.5,14 The average deviations of the calculated
values from the experimental data are 3.5% for
eq. (16), 5.0% for the Nielsen equation, and 10.7%
for the Cheng-Vachon equation. These results
prove that the introduction of Pd max as a new

Figure 5 Effect of volume content of the filler on the
thermal conductivity of the carbon short fiber-filled
polyethylene. Aspect ratio of the carbon short fiber is
13.4. Experimental data from ref. 13. h Experimental;

eq. (16); Nielsen equation; ------ Cheng-
Vachon equation.

Table II Value of A for Various Two-Phase Systems5

Type of Dispersed Phase Direction of Heat Flow A

Spheres Any 1.50
Randomly oriented rods,

Aspect ratio 5 2
Any 1.58

Randomly oriented rods,
Aspect ratio 5 4

Any 2.08

Randomly oriented rods,
Aspect ratio 5 6

Any 2.8

Randomly oriented rods,
Aspect ratio 5 10

Any 4.93

Randomly oriented rods,
Aspect ratio 5 15

Any 8.38

Uniaxially oriented fibers Parallel to fibers 2 L/Da

Uniaxially oriented fibers Perpendicular to fibers 0.5

a L and D represent length and diameter of the filler, respectively.

Figure 4 Effect of volume content of the filler on the
thermal conductivity of the spherical glass filled poly-
styrene. Experimental data from ref. 12. h Experimen-
tal; eq. (16); Nielsen equation; ------ Cheng-
Vachon equation.
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parameter improves the Cheng-Vachon equation,
and the new equation can describe the thermal
conductivity of composite materials consisting of
nonspherical fillers.

The values of Pd max and fm are very close in
each composite system. This trend has also
been seen in many other composite systems,
which are not detailed in this article. Although
Pd max is obtained from experimental data and
fm is determined from theoretical calculation,
they would theoretically represent the same
content of the filler in the composite materials.
Therefore, it is consistent for these values to be
close to each other. However, the processes by
which eq. (16) and the Nielsen equation are
deduced are completely different. Nevertheless,
it is interesting that these equations provide
very similar values of thermal conductivity of
composite materials.

The Nielsen equation needs two parameters
to describe the thermal conductivity of compos-

ite materials. If, at least, either the shape and
orientation or the maximum packing fraction of
the filler in the composite materials, i.e., A or
fm, is known, it would be valuable to apply the
fitting data technique to the Nielsen equation.
However, in practice, it is difficult to determine
these parameters when the filler shape is un-
known. It is also difficult for those systems with
mixed shapes. Meanwhile, the new equation
needs only one parameter to describe the ther-
mal conductivity of composite materials. Even if
the filler shape is unknown, the new equation
can provide precise values for any kind of com-
posite material. This implies that the new equa-
tion has the potential to be applied to polymer
blend systems.

Effect of Dispersion State of the Filler

Agari et al. reported the effect of the filler disper-
sion state on the thermal conductivity of the com-

Figure 6 Effect of volume content of the filler on the thermal conductivity of the
graphite filled polyethylene: Experimental data from ref. 15. h Experimental; eq.
(16); Nielsen equation; ------ Cheng-Vachon equation. (a) powder mixture; (b)
solution mixture; (c) roll-milled mixture; and (d) melt mixture.
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posite materials by using four dispersion systems:
powder mixture, solution mixture, roll-milled
mixture, and melt mixture.15 According to Agari
et al., the number of particles touching each other
decreases in the order of powder mixture . solu-
tion mixture 5 roll-milled mixture . melt mix-
ture. In this order, the dispersion state of the
filler becomes better if a state in which the filler
particles scarcely touch each other is defined as
good dispersion state.

Agari et al. used a polyethylene–graphite com-
posite to investigate the filler dispersion effect.
Figure 6(a)–(d) shows the thermal conductivity of
the composite materials for each dispersion sys-
tem. The Cheng-Vachon and Nielsen equations
are compared with eq. (16) in Figure 6(a)–(d). The
assigned parameter values for the Nielsen equa-
tion are 1.5 for A and 0.64 for fm. Nonetheless,
because it is impossible to know the exact values
of A and fm for each dispersion system, applying
the Nielsen equation to these systems might be
inappropriate.

The average deviation of the theoretical values
from the experimental data of the polyethylene–
graphite composite materials for these four differ-
ent dispersion systems are listed in Table III.
Pd max values, which are obtained by the fitting
process, are also listed in this table. Table III
shows that no matter what dispersion system is
used, the thermal conductivity values obtained
from the new equation are closer to the experi-
mental data than the ones obtained from the
other equations.

The higher Pd max corresponds to the better
dispersion state of the filler. This, in turn, im-
plies that Pd max will make it possible for the
thermal conductivity measurement to evaluate
the dispersion state of the filler in composite
materials.

CONCLUSIONS

The new theoretical equation including Pd max
can describe the thermal conductivity of two-
phase composite materials more accurately
than both the Cheng-Vachon and Nielsen equa-
tions. Even if the composite materials consist of
fillers having a larger aspect ratio, the new
equation is applicable to such composite mate-
rials. Because the new equation needs only one
parameter, it is more practical in describing the
thermal conductivity of two-phase materials
than the Nielsen equation. The new equation
does not even need the information of the filler
shape. Therefore, the new equation could be
applied to polymer blends.

Several composite materials that have differ-
ent filler dispersion systems have been investi-
gated with the new equation. This investigation
has shown that the new equation can describe the
thermal conductivity of any dispersion system
more accurately than both the Cheng-Vachon and
Nielsen equations. The higher Pd max values cor-
respond to the better dispersion state of the filler
in the composite materials. Therefore, Pd max can
potentially determine the dispersion state of the
filler in composite materials.
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